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SUMMARY

The ray solution for stationary hydrostatic mountain waves has a singularity along the vertical axis directly
over the mountain. We use Maslov’s method to improve the ray prediction. The ray solution is determined in the
wave-number domain and is then mapped by inverse Fourier transform to give a spatial description of the wave
field that approximates the linear solution over the mountain and elsewhere. We develop Maslov’s method for a
medium with a height-dependent mean wind and mean buoyancy, and we compare it with the traditional transform
method and with the results of a numerical simulation.
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1. INTRODUCTION

In a previous study, we developed a ray-tracing scheme for mountain waves that
includes the prediction of wave amplitudes along the ray (Broutman et al. 2001). We
initialized the rays with a near-field stationary-phase approximation, and we used the
ray-tracing to examine the far-field approach to critical layers in three dimensions with
rotation. We were unable, however, to analyse the region directly over the mountain.
Ray theory is inaccurate there because of the breakdown of the slowly varying approxi-
mation.

In the present study we first show that this breakdown is associated with a special
type of caustic that cannotbe treated by the usual correction techniques, such as an Airy-
function matching. We then use Maslov’s method to improve the ray prediction. The
method was developed in the 1960’s by V. P. Maslov as a short-wavelength asymptotic
technique for problems in quantum mechanics. An introduction to the method has
been given by Maslov and Fedoriuk (1981), Kravtsov and Orlov (1993), Thomson and
Chapman (1985), and Ziolkowski and Deschamps (1984). Another helpful reference, on
which our own work is most closely based, is Brown (2000).

To derive Maslov’s solution, we express the ray solution as a function of wave-
number coordinates, rather than in the usual way as a function of spatial coordinates.
In wave-number coordinates, the rays in our model remain well separated and do not
form caustics. The ray solution is then mapped from the wave-number coordinates to
the spatial coordinates by an inverse Fourier transform. The result reproduces the usual
spatial ray solution where that ray solution is accurate, but also corrects the caustic
singularity in the region over the mountain.

There is another way to derive Maslov’s solution, by a variation of the standard
transform technique. The difficulty with the standard technique is that the normal modes
are required, and these can rarely be expressed in a useful analytical form. Maslov’s
method amounts to a simplification in which the normal modes are approximated by ray
theory. Shutts (1998) has made this simplification in an analysis of hydrostatic mountain
waves in a turning wind. We show in section 3(c) that Maslov’s method gives Shutts’s
solution as a special case. The consideration of normal modes also leads to a criterion
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for the validity of Maslov’s solution, which depends on the largeness of the Richardson
number. Note that the standard ray method fails over the mountain for all Richardson
numbers.

In section 4, we compare Maslov’s method with a numerical simulation in Shutts
and Gadian (1999), finding reasonable agreement. They study mountain waves in a
turning wind using a nonlinear non-hydrostatic model, though their choice of a small
wide hill for this simulation favours a linear hydrostatic response.

Throughout this paper we assume linear stationary hydrostatic waves without
rotation. The medium is horizontally homogeneous, with smooth height-dependent
mean wind and mean buoyancy. These assumptions simplify the implementation of
Maslov’s method in significant ways. For example, the combination of horizontal
homogeneity and hydrostatic waves prevents caustics from occurring in the wave-
number coordinates. Maslov’s method handles cases in which there are caustics in both
spatial and wave-number coordinates, but the implementation is more difficult (e.g.
Brown 2000). Other potential difficulties associated with the inclusion of rotation and
non-hydrostatic effects are noted at the end of section 3.

We use the Boussinesq approximation until section 4. In that section, Maslov’s
solution is scaled in the standard way to account for the decrease in mean density with
height (Gill 1982, section 6.14). This is necessary for the comparison with the simulation
by Shutts and Gadian (1999), whose model uses the anelastic form of the continuity
equation.

2. RAY THEORY FOR STATIONARY HYDROSTATIC MOUNTAIN WAVES

We first describe the traditional ray solution for three-dimensional stationary hydro-
static mountain waves. Examples are given by Smith (1980) for the case of a uniform
medium, and by Shutts (1998) and Broad (1999) for cases with wind shear. Our aim here
is to understand why ray theory fails directly over the mountain. We use coordinates
x = (x, y) in the horizontal directions and z in the vertical direction. The mean wind
is horizontal and has the form U = (U (z), V (z)), and the mean buoyancy frequency is
N(z2).

The mountain waves have vertical wave number m and horizontal wave-number
vector

k= (k,]) = K(cos ¢, sin ¢), ()

with magnitude K and angle ¢ from the positive x-axis. We take the positive x-axis to
point in the downwind direction at ground level. Then the combination k < 0, m <0
and intrinsic frequency @ > 0 gives stationary waves with upward group propagation.
The intrinsic frequency and wave number satisfy

@=—KN/m=—kU —1V. 2)

The first relation in (2) is the hydrostatic form of the internal-wave dispersion relation
under present assumptions, while the second relation is the condition for stationary
waves which, by definition, have zero frequency relative to the ground. The group
velocity relative to the ground has horizontal components

cg = (¢cg1, c2) =(U —kN/Km,V —IN/Km) 3)
and vertical component ¢g3 = KN /m?.

It is convenient to use z as the independent ray variable, following Shutts (1998)
and Broad (1999). The ray path x(z) is then determined from

dx/dz = ¢g/cg3. )
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All rays are launched from the origin, consistent with a stationary-phase analysis
(Broutman et al. 2001). Since the medium is horizontally homogeneous, k and / are
constant along the ray.

It follows from (3) and (2) that

k- cg=0. (5)

It follows from (4), with the initial ray position at the origin, from (5), and from the
constancy of k along the ray, that
k*x=0. (6)

Therefore
X | eg. @)

This shows that the horizontal group velocity vector always lies on a line extending
radially from the origin. Each ray is thus constrained to remain in a single vertical
plane throughout its propagation. The propagation plane, with equation x/y = —I/k =
—tan ¢, passes through the origin and is normal to (k, [, 0). All rays with the same value
of ¢ share the same propagation plane. Similar points have been made by Shutts (1998)
and by Broad (1999). Note that the conditions (5)—(7) hold only in the hydrostatic limit
without rotation.
We illustrate this behaviour with an example taken from the model of Shutts (1998).
He considers the wind profile
U(z) = (U, Az), (8)

where Uy and A are constants and z = 0 is the ground. Shutts’s model reduces to that
of Smith (1980) when A = 0. In the example plotted below, we set A =0.003 s~ !,
Up=10m s71 and N = 0.01 s7!, values used in Shutts’s calculations.

Two sets of five ray paths each are shown in Figs. 1(a) and (b). The mean-
wind profile (8) used in these calculations is indicated in Fig. 1(a). Also indicated by
the dashed line in each plot is the projection of the ray paths onto the z =0 plane.
The projection is a single straight line because the rays in each set have the same value
of ¢ and, therefore, share the same propagation plane. In terms of the polar coordinate
angle 6 = tan_l(y/x), the propagation planes in Figs. 1(a) and (b) are defined by
6 = 50° and 8 = —50° respectively. In our wave-number notation (1) this corresponds
to wave-number angles ¢ = 140° and ¢ = —140°, respectively. The five rays in each
plot have K values equally spaced between 0.2/L and 1/L, where L =20 km is the
mountain width used by Shutts (1998).

Rays that propagate over the first quadrant (Fig. 1(a)) are refracted toward decreas-
ing intrinsic frequency. Each ray asymptotes toward its own critical-layer height. This
case was treated in detail by Shutts (1998) without rotation and by Broutman et al.
(2001) with rotation. These rays never intersect each other after leaving the origin.

Rays that initially propagate over the fourth quadrant (Fig. 1(b)) are refracted
toward increasing intrinsic frequency. Their vertical group velocity also increases with
height, and they encounter an increasingly strong cross-wind V (z). Eventually, these
rays reverse their horizontal direction of propagation, moving upwind in x and down-
wind in y. The rays loop back over the origin and intersect at a single point on the vertical
axis. Rays constrained to other planes with —7 /2 < 6 < 0 focus at other heights on the
vertical axis, forming a line of ray singularities. This is why Shutts’s stationary-phase
solution diverges over the mountain (see Eq. (67) of Shutts 1998).

We can prove the general result illustrated in Fig. 1(b), that all rays in the same
propagation plane intersect the vertical axis at the same point. We return to the case of
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Figure 1. Ray paths for the model of Shutts (1998). The axes are labelled in km, with the mean wind profile

indicated in panel (a) only. Rays are terminated after 80 buoyancy periods of propagation. The projection of the

ray paths onto the x—y plane is represented by the dashed line. Two types of behaviour are illustrated, depending

on whether the rays refract toward lower intrinsic frequency or toward higher intrinsic frequency. In the former

case, panel (a), each ray approaches its own critical level. The propagation plane is 6 = tan” " (y/x) = 50°. In the

latter case, panel (b), the rays loop over the mountain and intersect at one point on the z-axis. The propagation
plane is 6 = —50°.

arbitrary U(z), V(z) and N(z). It is sufficient here to work only with the x-coordinate
of the ray. When the x-coordinate vanishes, so does the y-coordinate, and the ray has
intersected the vertical axis. The ray equation (4) for x(z) becomes

X = Ci]dz
Cg3
tan¢/N() U(z)tan¢p — V(2)
K YU+ V@2

The integral in (9) is taken along the ray, and the ray is launched from the origin. The ray
position x dependsin general on K but, on the vertical axis, x = 0 and we are left with a
relation for z(¢) in which the K factor cancels out. Thus all rays in the same propagation
plane (determined by ¢) intersect each other on the vertical axis at precisely the same
point (or set of points).

The curve or surface on which neighbouring rays intersect each other is called a
caustic (Lighthill 1978; Kravtsov and Orlov 1993; Sonmor and Klaassen 2000). Each
neighbouring ray has a slightly different wave number, so the wave-number gradient
diverges on the caustic in violation of the slowly varying approximation. The ray
prediction for the wave-action density also diverges, depending inversely on the size
of a volume element enclosed by the neighbouring rays.

There are standard ways to correct the ray solution near certain types of caustics, but
this caustic is not one of those types. The simplest and most familiar caustic is corrected
with an Airy function (Lighthill 1978) and is characterized by the intersection of two
neighbouringrays at each point on the caustic. More complicated caustics require differ-
ent correction functions and involve the intersection of more rays. Three neighbouring
rays intersect at the tip of a cusped caustic, for example, whose correction function can
be found in the monograph by Kravtsov and Orlov (1993).

As we have just shown, the caustic over the mountain is intersected by an infinite
number of rays at each point. Such caustics arise only in very special circumstances and
are structurally unstable (Berry 1981, p. 480). That is, they generally break apart with a
small perturbation to the problem. A minor non-hydrostatic correction, for instance, is

)
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enough to eliminate the mountain-wave caustic entirely. By contrast, the simple Airy-
function caustic is one of several kinds of caustics (including the cusped caustic) that
survive perturbation and are structurally stable. A slight perturbation to a problem with
a stable caustic merely leads, in general, to a slight movement in the caustic’s position.

Broutman e al. (2001) computed non-hydrostatic ray solutions for the Shutts
(1998) model. Although the non-hydrostatic ray paths do not quite intersect over the
mountain, they still focus strongly there, causing a breakdown of the slowly varying
assumption and erroneously large ray predictions for the vertical displacement. Another
way is needed to correct the ray solution, and for this purpose we now turn to Maslov’s
method.

3. MASLOV’S METHOD

Maslov’s solution is the inverse Fourier transform of the ray solution expressed in
wave-number coordinates. To derive Maslov’s solution, we start with the more familiar
ray solution in spatial coordinates, map it to wave-number coordinates using the local
ray relation between wave number and position, apply boundary conditions, and then
map back to the spatial coordinates by inverse Fourier transform.

For stationary mountain waves there is no time dependence, and the z-dependence
can be treated parametrically. A ray variable describing the waves, such as the vertical
displacement, is written in spatial coordinates as

n(x, z) = a(x, z) eV ™ (10)
and in wave-number coordinates as
Tk, 2) = a(k, 2) o 3. (1)

As before x = (x, y) and k = (k, /). The inverse Fourier transform of 7(k, z) gives
Maslov’s solution

o o .
Nm(X, 2) = / / 7k, z) e** dk di. (12)
—00 v —00

(@) The spatial domain

The vertical-displacement amplitude |a(x, z)| in (10) can be obtained in ray theory
from conservation of wave-action. The wave-action density A (x, z) and the wave-energy
density E (x, z) are related by A = E /@, where @ is the intrinsic frequency. For gravity
waves without rotation

A= 3pola’N?/a, (13)
where pg is the mean density. In a steady-state application such as ours, A satisfies
Vi (egA) +0(cg3A) /02 =0, (14)

where V = (d/9dx, d/dy). Integration of (14) over a ray-tube volume, followed by an
application of the divergence theorem leads to (cf. Broad 1999)

X,y
cg3 Al ( ) = constant (15)
X0, Yo

following the ray. Here xq, yo is an initial point on the ray corresponding to z = zg.
The Jacobian in (15), defined by

X, ox 0 ox 0
J( y):__y___y, (16)
X0, Y0 dxg dyg  dyg dxg
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is evaluated at constant z and accounts for the change in A due to the horizontal
spreading of rays. The factor of cg3 in (15) accounts for the change in A due to the
vertical spreading of rays.

The phase v in the spatial solution (10) is given by

Y (x, 7) = Kk(x, z)‘x—l—fZ m(x, z') dz’. (17)
0

All rays originate from the origin, where ¥ = 0, consistent with the stationary-phase
solution (Shutts 1998; Broutman et al. 2001). For the hydrostatic case, we noted in
section 2 that k * x vanishes. We retain this term for now. It will cancel out below (in
(24)) without recourse to the hydrostatic approximation.

(b) The wave-number domain

Next we determine the wave-number solution 7(K, z) in (11). Starting with conser-
vation of wave-action (15), we re-express the Jacobian using the chain rule to yield

X, k,l
cg3 A (_y) J ( ) = constant. (18)
k,l X0, YO

The product of A with the first J acoEian in (18) transforms the wave-action from a spatial
density to a wave-number density A (K, z), i.e.,

Ak D= A 2] (’;—f) . (19)

The second Jacobian in (18) is constant along the ray in our problem. Thus
cg3;4~ = constant. (20)

In the wave-number domain, the vertical flux of wave-action is constant following
the ray. Figure 2 helps to illustrate this point. The left panel shows rays in the spatial
domain. They diverge strongly in all three dimensions as they move away from the
mountain centred at the origin. The right panel shows the corresponding rays in the
wave-number domain. Being parallel to the z-direction, they diverge or converge only
with respect to the z-direction. This implies the form of wave-action conservation given
in (20).

Ray initialization is simple in the wave-number domain. The rays can be initialized
directly from the mountain profile rather than through the near-field stationary-phase
analysis used by Broutman et al. (2001) to initialize rays in the spatial domain. The ver-
tical displacement 7(k, z) in (11) is equated at z = 0 to the Fourier transform Tz(k) of
the mountain profile /4 (x). Since 1/~/ vanishes at z = 0 (see (25) below), we are left with

a(k, 0) =h(k). @D
Next we relate A to 7in (11) by

A= gpolal’N? /@, (22)
analogous to the definition in the spatial domain (13) and analogous to the plane-
wave polarization relations between Fourier amplitudes of different variables (Gill 1982,

section 6.5). Combining (20), (21), and (22) yields
cg3 (k. 0) Bk, z>]1/2 N©
cos(k, 2) ®(k, 0) N(z)

dk, 2) = h(k) [ (23)
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Figure 2. Rays near the mountain in (a) the spatial domain and (b) the wave-number domain. The length of the

ray vectors is not significant. The mountain is centred at the origin in (a). The spatial coordinates are labelled

in km. The wave-number coordinates k, [ are normalized by the mountain width L =20 km. We have ignored

refraction because the dominant effect near the mountain is geometrical spreading. Refraction by vertical shear
causes the rays to curve in the spatial domain but not in the wave-number domain.

The phase in the wave-number domain IZ is related to the phase in the spatial-
domain ¥ by the Legendre transformation (e.g. Brown 2000; Ziolkowski and
Deschamps 1984)

Uk, z)=¥(x, z) — k- x(k, 2). (24)

Substituting from (17) gives a cancellation of k * x terms, leaving
Z
vk z)= / m(k, z') dz'. (25)
0

The cancellation of the k * x terms occurs only because Kk is constant along the ray. More
generally ¥ depends on | k* dx, whereas the term in the Legendre transformation is
always k * x.

(¢) The Maslov solution

Substituting the amplitude solution (23) and the phase solution (25) into the Fourier
integral (12) gives the Maslov solution

_NO /oo /OO~ [cgg(k 0) Bk, z>]”2 Emly a7 ks
me )=y | ) k) cor(k. 2) 3K 0) dk di.
(26)

In the case of a uniform medium, the ratio in square brackets is unity, as is the ratio
of N values, and foz m(K, z’) dz” = m(K)z. Thus (26) reduces to the integral solution in
the uniform-medium model of Smith (1980, Eq. (11)). For constant N and hydrostatic
waves, (26) simplifies to

m (K, z) ol Jo mk,2) dz’ ikex
N (X, 2) = / / h(k)[ . 0)] 0 K¥dkdl.  (27)

We now show that (27) agrees with the solution derived by Shutts (1998) for a
particular mean-wind profile. This serves as a check on our derivation and illustrates the
relation between Maslov’s method and a standard transform method involving normal
modes. It also leads to a condition for assessing the validity of Maslov’s solution.
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Shutts (1998) examines stationary hydrostatic mountain waves in a medium with
constant buoyancy frequency N and with mean wind velocity (U, Az), where Uy and
A are positive constants and z = 0 is the ground. Shutts derives an equation for the
normal modes in terms of the coordinate ¢ defined by

¢ 1
C 1+ (Aztan)/Up’

where ¢ = tan~' [ / k. (Shutts’s results are given here in his notation, which differs from
ours in that his k and m are positive.) The normal-mode equation is

Pl

— + =17 =0, 29

a2 T2l (29)
where u = N /(A sin ¢). As noted by Shutts, the exact solution to (29) has the form ¢V
with v =1/2 +i(u? — 1/4)V/2.

At this point in his derivation, Shutts makes two assumptions that amount to
invoking the ray approximation. First, he assumes that the Richardson number N 2/ A? is
large, so that 2 >> 1/4. Secondly, he considers only waves with upward group velocity,
corresponding to the negative root in the above expression for v. This ignores partial
reflection, which is also ignored in standard ray theory. After applying the boundary
condition at z = 0, Shutts finds that

i =c12h(k) e7inlogst, (30)

This result can also be derived from (29) by using a standard formula for the WKBJ
approximation (e.g. Gill 1980, Eq. (8.12.7)).

Shutts’s solution in the spatial domain is the two-dimensional Fourier integral of
(30). But this is exactly Maslov’s solution (27). To show that the two are equivalent,
we first note from (28) that for each normal mode ¢ = w(k, 0)/@(k, z), so that in
the hydrostatic approximation ¢ = m(k, z)/m(Kk, 0). It can also be shown that the
z-derivative of the phase function —u log ¢ in (30) is equal to m. Thus (30) can be
rewritten as

(28)

~ 7 m(K, z) 12 ifoZ m(k,z") dz’
1n=hk) |:m(k, 0)] e ; (€2
which is the quantity in Maslov’s Fourier integral (27).

Maslov’s method is thus a simplification of the standard transform method involv-
ing normal modes. Instead of solving for the normal modes exactly, Maslov’s method
uses their ray approximation. The exact normal modes cannot generally be determined
in a useful analytical form, but the ray approximation is a simple expression that is easily
calculated.

The accuracy of Maslov’s solution (27) thus depends on how well the ray approxi-
mation represents the normal modes. The normal modes are z-dependent, so we expect
the ray approximation to be valid when the vertical wave number is slowly varying, i.e.
when |m~=23m/9z| < 1 (see Lighthill 1978, p. 324).

We rewrite the dispersion relation (2) as

KN N
"TRUTIV Ucos+ Vsing
We allow U and V to be general functions of z, but keep N constant (following Shutts
(1998) and as in our comparison below with Shutts and Gadian (1999)). We then obtain

1 om U,cos¢p 4 V,sin¢

(32)

m2 3z N

(33)
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Hence the ray approximation to the normal modes, and consequently Maslov’s method,
is accurate for our model when the Richardson number N 2 /(U Zz + VZ) is large.

The condition |m~23m/dz| < 1 used here should not be confused with the con-
dition for ray-theory validity in the spatial domain. We do not know the appropriate
condition in the spatial domain, but it cannot be |m —20m/dz| < 1. This is obvious from
the discussion in section 2 and from the stationary-phase calculation of Shutts (1998);
ray theory breaks down in the region over the mountain even if the Richardson number
is large (or infinite, as in the case of Smith 1980). Over the mountain, there are strong
gradients in the horizontal wave numbers, which violate the slowly varying assumption.
These strong gradients are irrelevant when seeking a ray approximation to the normal-
mode equation because the horizontal wave numbers are then treated as constants.

(Note that in the derivation of (33) from (32), ¢ was not differentiated with respect
to z because k and /, and hence ¢, are fixed for each mode. For the spatial domain,
k and ! are considered to be functions of all spatial coordinates. But, as discussed
in section 2, each vertical plane contains waves of the same ¢, so ¢, =0. Thus the
expression given in (33) is correct for the spatial domain as well. It is the validity
condition |m~28m /dz| < 1 that is not appropriate for the spatial domain.)

In deriving Maslov’s solution (26), we did not make the hydrostatic approximation.
There is a complication, however, in applying Maslov’s theory to non-hydrostatic waves.
The ray approximation to the normal mode diverges at a buoyancy-frequency turning
point where c¢g3 vanishes. The divergence is evident from the constancy of ¢ g3 A(K, z) in
(20) and represents a caustic in the wave-number domain. One possible remedy is to use
an Airy-function approximation to the normal mode near its caustic, though we have not
tried this, nor have we yet considered trapped modes.

We can add rotation to the Maslov solution, but again there are complications. In the
rotating case, another factor is introduced into the relation between vertical displacement
and wave-action density in (13) (see Eq. (34) of Broutman ef al. (2001)). This factor
carries through the subsequent analysis and appears in the integrand of (26) as another
ratio between values at z = 0 and at z. The first complication (e.g. Inverarity and Shutts
2000, p. 2712) is that in the general rotating case the mean density has horizontal
variations imposed by the thermal-wind relation. Thus the horizontal wave numbers k, [
are not constant along the ray, though such variations in k, / may be unimportant in some
cases of interest. A second possible complication is that the standard ray approximation
to the normal-mode equation fails to satisfy the slowly varying assumption near a
rotating critical layer (Yamanaka and Tanaka 1984). A third complication is the presence
of an infinitely long lee-wave train of near-inertial oscillations (Shutts 2001). This causes
errors due to periodic wrap-around effects when the Fourier integral in Maslov’s solution
is approximated by a discrete transform (as in the upcoming example). The use of a
complex frequency to damp the inertia oscillations and limit their horizontal extent is
discussed in Shutts (2001).

In the following we continue to restrict attention to the hydrostatic case without
rotation.

4. AN EXAMPLE FROM SHUTTS AND GADIAN (1999)

We compare Maslov’s method with the numerical results shown in Fig. 11 of Shutts
and Gadian (1999). Although they use a nonlinear non-hydrostatic model, their choice of
parameters favours a linear hydrostatic response. For this case, the response compares
well with the linear hydrostatic theory also developed by Shutts and Gadian. Normal
modes are used in the theory but, since these have a very complicated analytical form,
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Shutts and Gadian found it simpler to integrate the normal-mode equation numerically,
in its exact form. As we have discussed in the previous section, Maslov’s method uses a
ray approximation to the normal modes.

Shutts and Gadian (1999) have, in fact, supplied a test of Maslov’s method. One of
their numerical simulations is compared against the theory of Shutts (1998) who, as we
mentioned in section 3(c), derived a special case of Maslov’s solution. The agreement
between the numerics and Shutts’s theory is very good in this case, as indicated by
Figs. 8(d) and 9 of Shutts and Gadian.

For the case in Fig. 11 of Shutts and Gadian (1999), the wind profile is given by

U(z) = Up[cos(wrz/H), sin(mz/H)], (34)
where Up = 10 m s~! and H = 12 km. The mountain height is
h(r) = ho/(1+r2/L?)*2, (35)

where r = (x2 + y%) /2, L =20 km, and ho = 100 m. In terms of the horizontal-wave-
number magnitude K, the Fourier transform of /(r) is (Smith 1980; Shutts 1998)

h(K)= 2m) ' hoL? exp(—K L). (36)

From (34), the term under the square root in the integrand of Maslov’s integral (27)
becomes
m(k, z)/m(k, 0) = k/[k cos(mz/H) + [ sin(wz/H)]. 37

The phase function in (27) can be evaluated analytically as

z N s 2NH _y ((ktan(mwz/2H) — 1 . (L)]
/(; m(k, z')dz’ = T |:tanh ( X )—I—tanh ralE (38)

The mean-density profile in Shutts and Gadian corresponds to N =0.0113 s,
and the Richardson number N2 /|U.|? is approximately 19. To account for the growth in
wave amplitude due to the decrease in mean density with height, the dependent variables
calculated below are multiplied by exp(z/2H ) (see section 6.14 of Gill (1982)). We use
a density scale height of H, = 7.5 km, consistent with typical values for the troposphere
(Gill 1982, p. 50).

The Maslov solutions for the x and z perturbation velocities, u and w, respectively,
are needed in order to compare with Shutts and Gadian’s results. The conversion from
vertical displacement 1 in (27) to u and w is accomplished by ray approximation.
For gravity waves, the required ray relations are @ = —i@?7 and # = —kmib/K?2. The
Maslov expression for w, for example, is (27) with the integrand multiplied by —i®.

Maslov’s Fourier integral is approximated using a discrete Fourier transform,
with £k wave numbers included as complex conjugate solutions (Smith 1980). In the
example below we used a 256 by 256 grid of k, [ wave numbers (including complex
conjugates), with maximum wave-number magnitudes of kyn.x = 8/L and /ax = 6/L,
L being the mountain width. Doubling k¢ and Ijnax (with the same total of 256% wave
numbers) led to very similar results, except for some noticeable periodic wrap-around
effects in the case of Fig. 3(c). Halving k.« and /4« led to significant short-scale errors,
especially in the cases of Figs. 3(c) and (d), where peak values decreased by about 30%.

In Fig. 3, we plot the Maslov solutions for u (panels (a) and (c)) and w (panels (b)
and (d)) that correspond to Fig. 11 of Shutts and Gadian. These are given at z = 2.1 km
(panels (a) and (b)) and at z = 6.3 km (panels (c¢) and (d)). For the k, [ grid we have
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Figure 3. The Maslov solution for the case in Fig. 11 of Shutts and Gadian (1999). The plots show the

perturbation velocities u# and w at the heights indicated above each panel. The contour interval (CI) and the

minimum and maximum values of the variables are (a) CI = 0.05, (—0.38, 0.35), (b) CI = 0.004, (—0.035,
0.030), (¢) CI = 0.05, (—0.25, 0.26), (d) CI = 0.002 (—0.018, 0.012).

chosen, the full domain is about 2011 km by 2680 km. Beyond these distances the
solution wraps around periodically.

The Maslov solutions are in reasonable agreement with Shutts and Gadian (1999).
For example, for the w solution in Fig. 3(b), the Shutts and Gadian contours show
a minimum value somewhere between —0.028 and —0.032 and a maximum value
somewhere between 0.028 and 0.032. The corresponding minimum and maximum
Maslov values are approximately —0.035 and 0.030. The ranges for the other Maslov
solutions are given in the caption.

5. DISCUSSION

When the slowly varying approximation breaks down in the spatial domain, the idea
of Maslov’s method is to look instead to the wave-number domain for a slowly varying
ray solution. A spatial solution is then obtained by inverse Fourier transform, giving
Maslov’s result (27). Away from the caustic over the mountain, the inverse Fourier
transform takes on its stationary-phase asymptotic limit and thus duplicates the standard
spatial ray solution in which one ray makes the dominant contribution at each position.
Near the caustic over the mountain, a spectrum of rays contributes significantly to the
wave field at each position, and this too is automatically represented by the inverse
Fourier transform. In other applications, other types of caustics occur, each properly
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represented in Maslov’s method by the inverse Fourier transform in the appropriate
asymptotic limit.

Several features of our model have made the implementation Maslov’s method
very straightforward. At the end of section 3 we noted the potential difficulties that
we avoided by our assumption of hydrostatic waves (which eliminates turning points
and trapped modes) and from our neglect of rotation. We also emphasize that many
applications, unlike the present one, will lead to caustics in both the wave-number and
spatial domains. Maslov’s method must then combine ray solutions from both domains.
Brown (2000) demonstrates how this can be done in a model of surface gravity waves.

The present work represents another step in our development of ray-tracing schemes
for internal gravity waves. A previous study concerned the (spatial-domain) initializa-
tion of the ray-tracing, and was discussed by Broutman et al. (2001). This initializa-
tion is suitable for a number of sufficiently idealized models involving radiation from a
localized source, including those models that describe internal gravity waves generated
by flow over topography, by a collapsing mixed region (Biihler et al. 1999; Biihler and
Mclntyre 1999), and possibly by buoyancy oscillations in clouds (e.g. Piani ef al. 2000).
An important need now is a practical way to correct the spurious amplification associ-
ated with the approach to a caustic, or the near miss of a caustic. Our initial experience
with Maslov’s method here shows that it can be helpful in this regard. Further work,
especially with non-hydrostatic and rotation effects included, is required to understand
the potential of Maslov’s method and the range of applications for which it can bring
useful insights.
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